MTH 531 Graduate Abstract Algebra II Spring 2014, 1–1

HW6, Math 531, Spring 2014

Ayman Badawi

QUESTION 1. (i) Let R be a commutative ring with $1 \neq 0$. Then (Hint: for this question, try to use class notes)

- a. Let P be a prime ideal of R. We know that P[X] is an ideal of R[X]. Prove that P[X] is a prime ideal of R[X].
- b. Let M be a maximal ideal of R. We know that M[X] is an ideal of R. Prove that M[X] is a prime ideal of R[X] but never a maximal ideal of R[X].
- (ii) Give me an example of a commutative ring with identity, say R, such that R has two prime ideals P, Q that are not co-prime such that neither $P \subset Q$ nor $Q \subset P$.
- (iii) Let R be a commutative ring with $1 \neq 0$. An element $e \in R$ is called idempotent if $e^2 = e$.
 - a. Prove that if e is an idempotent of R, then (1 e) is an idempotent of R.
 - b. Prove that if e is an idempotent of R, then $(1 2e) \in U(R)$.
 - c. Find all idempotent elements of $Z_{30} = Z/30Z$. [Hint: You may find them by try and error, but I recommend that you find the idempotents of Z_6 , then use Chinese Remainder Theorem]
 - d. Let e be an idempotent of a commutative ring R with $1 \neq 0$. Then it is clear that I = eR, J = (1 e)R are ideals of R. Prove that R is ring-isomorphic to $R/I \times R/J$.
- (iv) (Computational): We know that $X^2 + X + 2$ has no roots in Z. Let $I = (X^2 + X + 2)Z[X]$ is an ideal of Z[X], and let A = Z[X]/I. Find all roots of $P(Y) = (1 + I)Y^2 + (1 + I)Y + (2 + I) \in A[Y]$ over A. Note that over A sometimes we write P(Y) as $Y^2 + Y + 2$]
- (v) (computational): We know that I = 6Z[X] and J = 11Z[X] are ideals of Z[X]. Let A = Z[X]/I and B = Z[X]/J. Find a polynomial P(X) in Z[X] such that P(X) + I = (X + 3) + I (in A) and $P(X) + J = (X^3 + 7X^2 2X + 9) + J$ (in B).

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com